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Explicit evaluation of coupling coefficients for the most 
degenerate representations of SO(n) 
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Institut fir lheorelische Physik I, Universit;lt Erlangen-Niimkr& Staudtstrasse 7, 
W-8520 Erlangen, Federal Republic of -any 

Received 26 August 1992, in 6nal form 4 January 1993 

Abstract. FXplicit resulls [or particular mupling mefficients [or the most degenerate 
representations of SO(n) are given. The bscalar factors which allow a recursive 
calculation of arbilrary mupling coefficients from lhose of SO(3) are derived. 6j-  and 
9j-symbols for most degenerate representations are also briefly discused. 

1. Introduction and motivation 

Coupling coefficients for the orthogonal groups SO(n) are of great importance and 
interest in physics. In atomic and nuclear physics these coupling coefficients are 
used extensively. Another area of application is statistical physics. For example, 
a high-temperature expansion for the classical n-vector model can be performed to 
higher orders only if the coupling coefficients for the most degenerate representations 
of SO(n) are explicitly known. The idea of a group theoretical approach to the 
evaluation of classical statistical models has been outlined by Joyce [I] for the classical 
Heisenberg model (n = 3). A generalization to arbitrary n is only possible if the 
corresponding 3j-symbols are explicitly available. This has been the motivation for us 
to investigate 3j-symbols for the mast degenerate representations of SO(n) keeping 
n arbitrary. 

There has been substantial progress in the Clebsch-Gordan decomposition of 
products of irreducible representations for SO(n), SU(n) and Sp(2n) (see, for 
example, [Z]). However, explicit expressions for the associated Clebsch-Gordan 
coefficients besides the well-known ones of SU(2) U SO(3) [3,4] are a rarity. 
For some explicit results on SU(3) see the excellent text book by Cornwell [2]. 
Recent progress on SO(n) coupling coefficients, in particular on isoscalars, is due to 
AliSauskas [S, 61. 

In this paper, we calculate 3j-symbols for the most degenerate representation 
of SO(n) using the explicit representation functions [7]. In section 2 we recall 
some basic facts about these representations. Section 3 deEnes the 3j-symbols and 
presents explicit closed form expressions for particular cases. These are the first non- 
trivial contributions to a high-temperature expansion of the n-vector model mentioned 
above. After establishing the connection between the 3j-symbols and Clebsch-Gordan 
coefficients we present an iteration method for calculating arbitrary 3j-symbols using 
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the isoscalar factors. An explicit expression for these isoscalars is obtained. Finally, 
in section 6 we briefly discuss integral representations of 6j-  and 9j-symbols. These 
integrals appear, for example, in Sloop and &loop contributions to the partition 
function of n-vector models. 

2. The most degenerate representations d SO(n) 

The special orthogonal group SO(n) is the set of all linear transformations in the 
ndimensional Euclidean space Wn 

z:=gzi z i ' z : E W "  gESO(n)  i = 1 , 2  (1) 

which preserves the Euclidean norm lzil = and the scalar product z1'z2 = z;.z;. 
That is, SO(n) acts transitively on the unit sphere Sn-' in Rn. Here g is an 
orthogonal n x n matrix which can be built up by n(n  - 1)/2 simple rotatiom g k ( 0 )  
in the planes (ck,zktl)  

Anv rotation matrix a can be oresented in the form a = o(" -~ ) .  . '  a(') where 
g(L) := gl(e:)'..gk(& [7]. 

- - I 

A finite-dimensional irreducible representation of SO( n) is uniquely determined 
by its highest weight [SI 

with 

for n = 2k 

for n = 2k + 1. (4) 
P 1 > P Z > " ' > P & l >  IPkI 

p1 > p2 > . . .>  p k - l  > p k  2 0 

The components pi are either simultaneously integers (tensorial representations) or 
half-integers (spinorial representations). 

In this paper we consider only unitary irreducible representation of SO(n) in 
the Hilbert space H = L2( Sn-') of square integrable functions on the unit sphere 
Sn-'. 'Itansformations of SO(n) are defined by left translations 

%)f(z) := f(g-'z) 9 E W n ) .  (5) 

D ( g )  is called the quasi-regular representation 171. 
The Hilbert space H can be decomposed into an orthogonal sum of subspaces 

H' of homogeneous polynomials of degree e in n variables. Each invariant subspace 
H' carries an irreducible representation of SO(n) with highest weight [SI 

[!,O ,..., O] e = 0 , 1 , 2 , 3  ,.... (6) 

Such a representation which will be denoted by ZJ' is called the representation OfcZass 
one or most degenerate representafion of SO(n). 
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Let us introduce a complete orthonormal basis set { l t , M ) }  in H' where the 
(n - 2)-tuple M := (mn-*, mn-3,. . . , m,, m l )  enumerates these basis states. The 
mi's fulfill the following inequality relations [7,8] 

e = : m n - l > , m n - Z > , . . . ~ m , ~ l m l l  m l € Z  m ; E N o  i = 2  ,..., 71-2. 
(7) 

The dimension of the space H' and hence also of the representation 'DL is 

( e +  n -3)! 
e!(n -2)! . d,  := (2!+ n - 2) 

The matrix elements of the representation 'D' in the above basis read 

DLM49) := ( e ,  MID?s)le, M') .  (9) 

Explicitly, the particular matrix elements D h u ( g ) ,  the zero stands for the (n - 2)- 
tuple (0,. . . ,O), are given by a product of Gegenbauer polynomials C ; ( z )  [7l 

where 

(11) 

is the correct normalization factor with respect to the normalized Haar measure dg 
on SO(n) 

In the above hMM, stands for the product 6m.-zmL-2 . . .  6m,m;. The angles in 
(10) are the polar coordinates of the unit vector e := (e ' ,  . . . ,e") which is the image 
of the north pole a := (0,. . . , O , l )  under the rotation e = g(n-l)a 

e1 = sin @(%-I)  sin a(n-2) . . .sin @ ( I )  

.2 = sin a(n-1) sin q I ( m - 2 )  . . , a s  @(I)  

with the conditions 0 6 @(I) < 2n and 0 < 6 T for i $ 1. Actually, the 
polar coordinates can be identified with the Euler angles (2) of the rotation matrix 
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g ( n - l )  = gl (0; - ' )  . . .g, ,- ,(O;:;) ,  ie. 
rotations gck)  with k < n - 1. 

subgroup SO( n - 1) formed by the set of rotations about the north pole a 

= er-'. Note that a is invariant under 

The matrix elements P L u ( g )  are invariant under right translations of the 

D,&,(gh) = D,&,(g) Vh E SO(n - 1). (14) 

In other words, SO( n-1) is the stability group of a and contains all rotation matrices 
of the type g ( k )  with k 6 n -2. Matrix elements of the form (14) are called spherical 
functions and are related to the hyperspherical harmonics in n dimensions by 

Here ISn-'l := 2n"lz/I'(n/2) denotes the volume of the unit sphere S"-'. Note 
that by construction le) = D ( g ) l a ) .  The hyperspherical harmonics are the q- 
representation of the basis states I€, M), i.e. YtM(e)  := (el€, M). With the relation 
(a /€ ,  M) = m 6 M u  one obtains (15). The hyperspherical harmonics form a 
complete set on S"-' and are orthonormal with respect to the associated Lebesgue 
measure 

J dR-'eY,,(e)Y;,,(e) = 6tr,6,M,. (16) 
s m - 1  

The measure reads in terms of the polar coordinates (13) 

(17) dn-le = ~in"-~@("-1) ,  . .sjn@(z)d@(n-l) ,  ..d@('), 

For M = 0 the spherical functions (14) reduce to the so-called zonal spherical 
functions 

where 0 := @("-I) is the polar angle of the unit vector e = g a .  Or, more generally, 
if g maps I into 2' (cf equation (1)) the angle 0 is given by cos0 = z . z'/1z11z'1. 

3. Explicit results for particular 3j-symbols 

In this section we will present explicit expressions for particular 3j-symbols for the 
most degenerate representations of SO(n). It has been shown by Girardi er ai 191 that 
the Kronecker product of two class-one representations decomposes in a Clebsch- 
Gordan series as follows (e,  2 e,) 

12 1 

[€,,O,. . . ,O] 'a [4,0, . . . ,O] = @@I€, + e, - 21 - k, k,O, . . . ,O]. (19) 
I=U k=U 
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We are only interested in the coefficients for the most degenerate representations on 
the right-hand side, i.e. those with k = 0. Let us define the corresponding 3j-symbols 
by an integral as follows 

Note that the class-one representations are multiplicity-free. In (20) we have also 
utilized the fact that the 37s can chosen to be real without loss of generality. 

We will first consider the particular case where Mi = 0 for all i = 1,2,3. In this 
case (20) reduces to a known integral over three Gegenbauer polynomials 

This integral vanishes unless [7] (also see [lo] where the special case n = 3 is treated) 

25 := e, + e, + e, 
e; = e j  +eh,ej  + e k  - I , .  . . ,lej - e,l. 

with J = 0, I, 2,. . . 
(22) 

Note that these conditions are the same as those hown for SO(3). The result of the 
integration can be given in closed formt 

(23) 
e i + ( n - 2 ) / 2  r ( 5 - e i + ( n - 2 ) / 2  xfi{ i=l 4% r(J- ei t 1) 

Equation (23) only determines the absolute value for the 3j-symbols. The relative 
signs have to be fixed by a phase convention. We adopted the convention 

(El  0 0 0  e 3 ) = ( - 1 ) J l ( e 1  0 0 0  e 3 ) l  

which is the Sam& as for n = 3 161. In table 1 we list some explicit 3j-symbols of the 
type (24) for the groups SO(5), SO(6) and SO(7). Note that the 3j-symbol (24) is 
invariant under any permutation of e,,e,,E,. Because of this invariance we present in 

t It has been mentioned Ly Vilenkin [7] that the integral appearing in (21) is related to special coupling 
mefficienfs. However, no explicit apressions lor 3j-symbOls have teen given. 
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mbk 1. The quare of the 3j-symbol (23) for the group SO($, SO(6) and SO(?. 
Here, S denotes he sign for the coupling coefficients according to the phase mnvention 
(W. 
11 t 2  t 3  S SO($ SO(6) SO(7) 

1 1 o o o t 1  
I t a - 4  B i 

1 

1 
2 1 1 + &  irrj &i 
z 2 0 + &  & & 

$ii 
3 2 1 -  2.3.7 ij3 3% 

3 3 2 + m &  31.1.11.1) 
4 2 2 t h  m )‘1115 

4 3 3 - & &  7333 

4 4 0 + m  rfi mi? 
4 4 2 - & & *  
4 4 4 + ” &  2‘ dm 

3 
$ 1 

1 

1 1 1 

2 2 2 - m  
- 

5 3  mi - 
2.3.5 3 3 0 -  

3% 23.1 

1 -&- 
3 2.7 

4 3 1 + &  5 3 7  1.11.13 

1 

I 1 2 

1 1 1 
5 3 2 - m  tTri 32.11.1) 

5 4 3 + J T i r r S F 3 7 3 . 7 . l l - 1 J . n  
5 5 0 - 5 i S  9% m 

5 5 4 - ” i i f . ? r  & 

5x7 mm 
2‘ 3’ 2,SZ 

- 
11.13 5 4 1 -  

1 I 

51 
5 5 2 + &  S.7.13.17 

2‘4 3 

table 1 only those where e ,  
in the table. 

simplifications for expression (23). Here we mention two examples 

e, t3. Vanishing 3j-symbols have not been included 

For particular combinations of el,!2,,e3 it is also possible to make extensive 

which indeed coincide for n = 3 with the standard 3j-symbols of Wigner [6]. These 
two examples are of particular interest in the high-temperature expansion for the 
classical n-veetor model [ll]. They appear as weights of the @-topology, which is the 
fist non-trivial contribution to the high-temperature series of the partition function, 
and have been obtained by Domb Ill]  only for e = 1,2,3 after lengthy calculations. 

Another approach for evaluating 3j-symbols is to utilize the equivalent definition 
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where the dots indicate the contributions of the terms with IC 2 1 in (19). Equivalence 
with the definition (20) becomes obvious by making use of the orthogonality relation 

Again let us iirst consider the particular case for Mi = 0, i = 1,2,3. The 
(12). 

recursion relation of Gegenbauer polynomials [12] 

( e  + i)ct;,(~) = 2(e + v).c;(~) - (e+  2V - i)c~y_~(~) 
and their relation to the zonal spherical functions (18) lead to the following recursion 
formula 

A comparison with (25) gives 

Up to now we have only considered 3j-symbols with M = 0. The simplest one 
with non-vanhhing M's can be obtained from the orthogonality relation (12) with 

.o?r"(9) = (-1)".o&"(9) (27) 

where 
- 
M := (m,,-?, . . . , m2,-ml)  (28) 

is the Same as M but with the last component having opposite sign. Because of 
Dk(g) = 1 we find 

For n = 3 this reduces indeed to the hown result [6]. The evaluation of more 
general 3j-symbols will be the subject of section 5. 

4. Connection with Clebsch-Gordan coefficients 

Before we consider the evaluation of an arbitraly 3j-symbol we would like to mention 
some properties for the Clcbsch-Gordan coefficients of class-one representations 
which are closely related to the 3j-symbols. 

We have seen h the above section that the product space H!I'@ HfZ decomposes 
into irreducible subspaces as follows 
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where only those e values are allowed which fulfill the condition (22). The dots on 
the right-hand side stand for the terms with non-zero IC in the Clebsch-Gordan series 
(19)- 

As a basis in this product space we can introduce the states 

lelM,;ezMz) := I4,fifl) @ lt2,Mz). (31) 

As an alternative choice to thiisproducr basis we can choose canonical bases {le, M ) }  
in each irreducible subspace HL. Let us call the corresponding basis a coupled basis 
and denote the basis states for the first orthogonal sum on the right-hand side of (30) 
bY 

I(elflz)eM) E{le,M)l le= l ~ l - ~ z l ~ ~ ~ ~ ~ ~ l + ~ z ~ .  (32) 

Note that these states do not form a complete set as the subspaces indicated by dots 
in (30) also have to be taken into account. 

The Clebsch-Gordan coefficients form an unitary matrix which transforms from 
the product basis (31) to the coupled basis containing (32). We are only interested 
in the foUowing matrix elements which can be chosen to be real 

( ~ l M * ; 4 ~ z l ( e l e z ) e ~ )  = ((~lez)eMle,Ml; w4). (33) 

The decomposition (30) also implies the following relation for the representation 
matrices 

'Dk,"(s)'D$z"(s) = ( ~ l ~ l ; ~ z f i ~ ~ l ( ~ l ~ , ) ~ , ~ ~ ) ( ( ~ l 4 ~ ~ , o l ~ l o ; ~ 2 o ) . o ~ , : , , ( s ) + ~  ' '. 
4.W 

(34) 

This may be compared with (25) leading to the identification 

where again we have adopted a phase convention which for n = 3 is that used in 
standard tables [6], Here ml is the last component of the tuple M. 

5. Evaluation of arbitrary 3j-symbols through isoscalars 

According to Racah's factorization lemma [13] the Clebsch-Gordan coefficients (CGS) 
of a group G may be expressed in terms of the CGS of a subgroup H of G. This lemma 
essentially states that the cGs of G are (ignoring possible multiplicities) proportional 
to the CGS of its subgroup H .  The constant of proportionality is called the isocahr 
fucfor. A proof of this lemma for the'group chains 

S U ( n ) 3 S U ( n - l )  3 " ' 3 S U ( 2 )  

Sp(2n) 3 Sp(2n - 2) 3 ". 3 Sp(2) 

S O ( n ) > S O ( n - l ) > . . . 3 S 0 ( 3 )  
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has been given by Klimyk [14]. 
Here we d l  utilize Racah's lemma for the calculation of the 3j-symbols for the 

most degenerate representation of W ( n )  from that of SO(n - 1). We will we 
subscripts or superscripts (n) and (n - 1) for any expression which is associated 
with the group SO(n) and SO(n - l), respectively. The associated isoscalars can be 
defined by 

In the above we assume n 2 4 as for SO(3) the 3j-symbols are well known. 
Furthermore, the Mi stand, as before, for the (n -2)-tuples Mi = (mi-2,. . . ,mi) 
enumerating the basis states for the SO(n) representations. The representations for 
the subgroup SO( n - 1) are labelled by X i  := and for enumeration of the basis 
we introduced ( n  - 3)-tuples Ni := . . ,mi), Le. Mi = (Xi, Ni). As the 
3j-symbols for M = N = 0 are already !mown explicitly, we may obtain the general 
3j-symbol of SO(n) through (36) from that of SO(3) by induction. However, we still 
need an explicit expression for the isoscalars. For this we express the left-hand side 
of (36) in terms of the integral (cf equation (20)) 

J dgD~,~)(g)D~~)(g)D$;)(g) 
w(n) 

where we have made we of the invariance (14) of spherical functions. Now usinpr - 
the explicit form (10) we can rewrite D,$i)(g) in'terms of D;C-')(h) where 

= hgn-r(S) 

The normalization factors A$ and A?;') are given in (11). Similarly, we may write 
for the measure 

Inserting these expressions in (36), the isoscalars can be given by an integral over 
three Gegenbauer polynomials 
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Unfortunately, this integral is only known in closed form for A, = A, = A, = 0 
where it reduces to (21), i.e. 

However, for non-zem A’s we can express the isoscalar as a triple sum. 
Let us consider the integral 

]de sinqec;;(mse) c 3 c o s 0 )  c,y:(cose). (41) 
0 

For its calculation we express the Gegenbauer polynomials as a series in cos 0 [12] 

whcre [z] stands for the integer part of +. Or with the relation 2P-2p/I’(p-2p+1) = 
~ ~ ( ( p + i } / 2 - ~ } r ( ( ~ + 2 } / 2 - p ) ~ - 1  

(43) 
U 

Note that the ranges for the sums are now implicitly defined by the Gamma functions 
in the denominator. The remaining integral may be performed and leads to a beta 
function B( z, y) 

Note that (41) vanishes unless pl + p, + p, is an even integer. For the isoscalar (40) 
this means that C;+(ti - A i )  has to be an even integer. 

Inserting everythlng into (40) the isoscalar factor can be written as a triple sum 
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where 25 := e, + e, + e3 and 2A := A, + A, -t A,. This expression is now in a 
suitable form for numerical evaluation of isoscalars and via (36) also for 3j-symbols. 

More general results, including also the representations with k > 0 in (19), 
are given by AliSauskas [5,6]. Let us point out the interesting observation of 
AliSauskas 161 that isoscalars of SO(n) are related to coupling coefficients of SO(3). 
An explanation of this might go as follows. The present derivation is based on 
the polar coordinate parameterization (13). However, one could also choose, for 
example, a biharmonic coordinate system where the matrix elements (10) become 
products of Wigner polynomials, i.e. matrix elements of SO(3) matrices [SI. ' he  latter 
parameterization Seems to be more suitable to shed some light on the observation by 
Alihuskas mentioned before. 

6. Definition and representations of 6j- and 9j-symbols 

In this section we briefly present various representations for 6j- and 9j-symbols. 
These coupling coefficients show up, for example, in the higher-order terms of a 
high-temperature expansion for n-vector models [l, 111. The 6j-symbol appears in 
the a-graph which is a 3-loop contribution and the 9j-symbol comes with the A- 
graph, a 4-loop contribution to the partition function. 

The group integral appearing for the a-graph may be used as a definition for the 
6j-symbol as it is a generalization for the integral representation of the 6j-symbol 
for SO(3) 

J J J dg1dg2dg3 %xgl)z)~(92)z)~(g3)~~(g;1g3)z)~(g;Ig, Pk(g;'gz 1 
=(n)=(n)=(n) 

From this definition one obtains with (27) and (20) the summation formula 

(e3 e4 
0 M4 as)' 

Here and below mi stands for the last component of the tuple Mi = 
( m i - z , .  . . ,mi),  Le. mi := mi. For e4 = 0 follows M., = 0 and we find, for 
example 



1660 G Junker 

More explicit results on 6j-symbols of SO(n) are given in [15]. Another summation 
formula may be obtained from the definition (45) by multiplication with 1 = 
k . 1  dg, and the substitution gi -, g;'gi 

This is indeed a special case of the general definition for 3nj-symbols proposed by 
Derome and Sharp [16] and thus justifies the definition (45). 

Similarly, we may define the 9j-symbol following [16] 

= ( o  el 0 e3 o ) ( o  e4 0 o ) ( o  e, 0 0 )  

4 e2 e3  

e7 ea e, 
' ( 0  e1 e4 0 e, O)(O e, e5 0 ea O)(O e3  e 6  0 e 9  0 ) { ( '  

and is precisely the integral appearing in the A-graph of a high-temperature expansion 
of n-vector models. 

7. Closing remarks 

In this paper we have presented explicit expressions for 3j-symbols of the most 
degenerate representations of SO(n). The closed-form expression given in (U) is 
of particular interest in the calculation of high-temperature properties of n-vector 
models. They are related to the high-temperature-expansion coefficients defined by 
Domb [ l l ]  
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and thus an explicit expression for arbitrary e,, e,, e3 has been found. Similarly, the 
higherader coefficients 

are now also available in closed form. Further results will be given elsewhere 1171. 
It has been mentioned that the motivation to the present study is due to 

our interest in explicit high-temperature expansions of statistical models with 
SO( n) symmetry. For this reason we have been working in the polar coordinate 
parameterization (13) which is most suitable for that aim. However, an analysis 
similar to the present work can be done using other coordinate systems which will 
lead to other representations for coupling coefficients of SO(n).  In particular, the 
biharmonic coordinate system used by Barut and Raczka [SI may provide additional 
insight to the relation between coupling coefficients of SO(n) and those of SO(3) 
[6 151. 
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